Combining Future Internet Media with Broadcast TV Content

Christopher Howson, Eric Gautier, Philippe Gilberton, Anthony Laurent & Yvon Legallais

NEM SUMMIT 2011
September 28th 2011, Torino, Italy
Exploit broadcast/broadband network complementarity

- Broadcast is good for live events and mass distribution
- Broadband is good for on-demand, catch-up & personalized services

Develop combined broadcast/broadband networking techniques

- Services composed of components from broadcast, broadband and storage sources

Use cases

- Personalized content for broadcast TV
 - More languages for a film
 - Alternative views for sport/music
- Extension of service delivery capacity
 - 2D to 3D
Technical challenges

TV service components sourced from servers located anywhere
- Broadcast and broadband servers not collocated

Component delivery over heterogeneous networks
- Having different reference clocks
- Using different transport protocols
- With different transmission delays
- Broadcast with Internet multicast or on-demand delivery

Involving TV and second screen terminals
- Clock drift and rendering synchronization
Background

Adopt “usual” broadcast MPEG PTS/PCR for both networks

- Mark broadband content with a PTS that refers to the PCR
- Buffer the first stream received and re-align timing

Such an approach presents some limitations

- Implies reference clock sharing for broadcast and broadband sources
 - Either collocated sources or clock recovery at a remote source
- Is not suitable for on-demand services
 - No reference to temporal position in current event
- PCR continuity can be difficult to maintain
 - Service re-multiplexing regenerates PCR

Our event timeline solution

- A common timing reference attached to the content item itself
 - Independent of transport and timing protocols
The event timeline approach

Event timeline

- Indicates progress in an event since its beginning
 - Event is a grouping of elementary streams with a defined start and end time

Timeline carried as an auxiliary service component

- Conveys multiple event timelines

- Generally carried over both broadcast and broadband networks
 - On-demand content synchronization possible without broadband timeline

- Encapsulated in DVB specified\(^1\) descriptors
 - “broadcast timeline” and “content labelling”

- Synchronized with the other service components
 - Using existing network delivery protocol mechanisms

(1) ETSI TS 102 823 “Specification for the carriage of synchronized auxiliary data in DVB transport streams”
Timeline insertion

Timeline carried as an elementary stream

- Added to a service in a similar way to subtitles
- Timeline data supplier generates the timeline
 - May exploit existing playout content timecodes
- Timeline encoder encapsulates the timeline in transport format
 - Assures synchronization with A/V components
 - Computes timestamps using system clock

Timeline component insertion in MPEG2-TS
Synchronizing MPEG2-TS and RTP components

Event Timeline

Broadcast Components (MPEG2-TS)

Timeline PTS

Right view Video packet

Timeline packet

Timeline packet

Left View Video Packet

Audio PTS

Inter-delay network

RTP synchro

TS synchro

Event Timeline synchro

technicolor
Synchronizing on-demand components

No need for broadband timeline

- Receiver initiates the process
- Broadcast timeline indicates temporal position in event
- Measure RTT to on-demand server
- Content request includes margin
 - Ensures broadband content received before broadcast presentation
- Broadband content aligned to broadcast “master”

- Timeline includes “countdown” announcing event start in advance
- Account for communication time between receiver and companion device
- Receiver periodically reports timeline position
Evaluation platform: 3D Enabler

DVB-T Broadcast network

Left View
Audio

Timeline

Right View
Timeline

Internet

Content Provider

Top
Bottom
Side
by
Side
Frame
Packing
Full HD

technicolor
Conclusions

Synchronization solution for combining Internet and broadcast content
- Event based timeline component
- Aligns the presentation of components delivered over different networks
- Compatible with any existing or future transport protocols
- Readily deployed on existing broadcast or broadband infrastructure
- End to end architecture

Experimental implementation
- Stereo 3D TV using combined Internet/broadcast delivery
- High performance synchronization capability demonstrated

Future work
- Standardization
- Alternative solutions

Work partly achieved within the Quaero program, funded by OSEO, French state agency for innovation
Thank you for your attention